Highest Common Factor of 797, 574, 763 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 797, 574, 763 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 797, 574, 763 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 797, 574, 763 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 797, 574, 763 is 1.

HCF(797, 574, 763) = 1

HCF of 797, 574, 763 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 797, 574, 763 is 1.

Highest Common Factor of 797,574,763 using Euclid's algorithm

Highest Common Factor of 797,574,763 is 1

Step 1: Since 797 > 574, we apply the division lemma to 797 and 574, to get

797 = 574 x 1 + 223

Step 2: Since the reminder 574 ≠ 0, we apply division lemma to 223 and 574, to get

574 = 223 x 2 + 128

Step 3: We consider the new divisor 223 and the new remainder 128, and apply the division lemma to get

223 = 128 x 1 + 95

We consider the new divisor 128 and the new remainder 95,and apply the division lemma to get

128 = 95 x 1 + 33

We consider the new divisor 95 and the new remainder 33,and apply the division lemma to get

95 = 33 x 2 + 29

We consider the new divisor 33 and the new remainder 29,and apply the division lemma to get

33 = 29 x 1 + 4

We consider the new divisor 29 and the new remainder 4,and apply the division lemma to get

29 = 4 x 7 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 797 and 574 is 1

Notice that 1 = HCF(4,1) = HCF(29,4) = HCF(33,29) = HCF(95,33) = HCF(128,95) = HCF(223,128) = HCF(574,223) = HCF(797,574) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 763 > 1, we apply the division lemma to 763 and 1, to get

763 = 1 x 763 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 763 is 1

Notice that 1 = HCF(763,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 797, 574, 763 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 797, 574, 763?

Answer: HCF of 797, 574, 763 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 797, 574, 763 using Euclid's Algorithm?

Answer: For arbitrary numbers 797, 574, 763 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.