Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 798, 126 i.e. 42 the largest integer that leaves a remainder zero for all numbers.
HCF of 798, 126 is 42 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 798, 126 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 798, 126 is 42.
HCF(798, 126) = 42
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 798, 126 is 42.
Step 1: Since 798 > 126, we apply the division lemma to 798 and 126, to get
798 = 126 x 6 + 42
Step 2: Since the reminder 126 ≠ 0, we apply division lemma to 42 and 126, to get
126 = 42 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 42, the HCF of 798 and 126 is 42
Notice that 42 = HCF(126,42) = HCF(798,126) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 798, 126?
Answer: HCF of 798, 126 is 42 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 798, 126 using Euclid's Algorithm?
Answer: For arbitrary numbers 798, 126 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.