Highest Common Factor of 803, 1081 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 803, 1081 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 803, 1081 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 803, 1081 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 803, 1081 is 1.

HCF(803, 1081) = 1

HCF of 803, 1081 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 803, 1081 is 1.

Highest Common Factor of 803,1081 using Euclid's algorithm

Highest Common Factor of 803,1081 is 1

Step 1: Since 1081 > 803, we apply the division lemma to 1081 and 803, to get

1081 = 803 x 1 + 278

Step 2: Since the reminder 803 ≠ 0, we apply division lemma to 278 and 803, to get

803 = 278 x 2 + 247

Step 3: We consider the new divisor 278 and the new remainder 247, and apply the division lemma to get

278 = 247 x 1 + 31

We consider the new divisor 247 and the new remainder 31,and apply the division lemma to get

247 = 31 x 7 + 30

We consider the new divisor 31 and the new remainder 30,and apply the division lemma to get

31 = 30 x 1 + 1

We consider the new divisor 30 and the new remainder 1,and apply the division lemma to get

30 = 1 x 30 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 803 and 1081 is 1

Notice that 1 = HCF(30,1) = HCF(31,30) = HCF(247,31) = HCF(278,247) = HCF(803,278) = HCF(1081,803) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 803, 1081 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 803, 1081?

Answer: HCF of 803, 1081 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 803, 1081 using Euclid's Algorithm?

Answer: For arbitrary numbers 803, 1081 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.