Highest Common Factor of 804, 632, 679 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 804, 632, 679 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 804, 632, 679 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 804, 632, 679 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 804, 632, 679 is 1.

HCF(804, 632, 679) = 1

HCF of 804, 632, 679 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 804, 632, 679 is 1.

Highest Common Factor of 804,632,679 using Euclid's algorithm

Highest Common Factor of 804,632,679 is 1

Step 1: Since 804 > 632, we apply the division lemma to 804 and 632, to get

804 = 632 x 1 + 172

Step 2: Since the reminder 632 ≠ 0, we apply division lemma to 172 and 632, to get

632 = 172 x 3 + 116

Step 3: We consider the new divisor 172 and the new remainder 116, and apply the division lemma to get

172 = 116 x 1 + 56

We consider the new divisor 116 and the new remainder 56,and apply the division lemma to get

116 = 56 x 2 + 4

We consider the new divisor 56 and the new remainder 4,and apply the division lemma to get

56 = 4 x 14 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 804 and 632 is 4

Notice that 4 = HCF(56,4) = HCF(116,56) = HCF(172,116) = HCF(632,172) = HCF(804,632) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 679 > 4, we apply the division lemma to 679 and 4, to get

679 = 4 x 169 + 3

Step 2: Since the reminder 4 ≠ 0, we apply division lemma to 3 and 4, to get

4 = 3 x 1 + 1

Step 3: We consider the new divisor 3 and the new remainder 1, and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 4 and 679 is 1

Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(679,4) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 804, 632, 679 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 804, 632, 679?

Answer: HCF of 804, 632, 679 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 804, 632, 679 using Euclid's Algorithm?

Answer: For arbitrary numbers 804, 632, 679 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.