Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 809, 6850 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 809, 6850 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 809, 6850 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 809, 6850 is 1.
HCF(809, 6850) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 809, 6850 is 1.
Step 1: Since 6850 > 809, we apply the division lemma to 6850 and 809, to get
6850 = 809 x 8 + 378
Step 2: Since the reminder 809 ≠ 0, we apply division lemma to 378 and 809, to get
809 = 378 x 2 + 53
Step 3: We consider the new divisor 378 and the new remainder 53, and apply the division lemma to get
378 = 53 x 7 + 7
We consider the new divisor 53 and the new remainder 7,and apply the division lemma to get
53 = 7 x 7 + 4
We consider the new divisor 7 and the new remainder 4,and apply the division lemma to get
7 = 4 x 1 + 3
We consider the new divisor 4 and the new remainder 3,and apply the division lemma to get
4 = 3 x 1 + 1
We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get
3 = 1 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 809 and 6850 is 1
Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(7,4) = HCF(53,7) = HCF(378,53) = HCF(809,378) = HCF(6850,809) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 809, 6850?
Answer: HCF of 809, 6850 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 809, 6850 using Euclid's Algorithm?
Answer: For arbitrary numbers 809, 6850 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.