Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 809, 7542, 6738 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 809, 7542, 6738 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 809, 7542, 6738 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 809, 7542, 6738 is 1.
HCF(809, 7542, 6738) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 809, 7542, 6738 is 1.
Step 1: Since 7542 > 809, we apply the division lemma to 7542 and 809, to get
7542 = 809 x 9 + 261
Step 2: Since the reminder 809 ≠ 0, we apply division lemma to 261 and 809, to get
809 = 261 x 3 + 26
Step 3: We consider the new divisor 261 and the new remainder 26, and apply the division lemma to get
261 = 26 x 10 + 1
We consider the new divisor 26 and the new remainder 1, and apply the division lemma to get
26 = 1 x 26 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 809 and 7542 is 1
Notice that 1 = HCF(26,1) = HCF(261,26) = HCF(809,261) = HCF(7542,809) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 6738 > 1, we apply the division lemma to 6738 and 1, to get
6738 = 1 x 6738 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 6738 is 1
Notice that 1 = HCF(6738,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 809, 7542, 6738?
Answer: HCF of 809, 7542, 6738 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 809, 7542, 6738 using Euclid's Algorithm?
Answer: For arbitrary numbers 809, 7542, 6738 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.