Highest Common Factor of 816, 308 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 816, 308 i.e. 4 the largest integer that leaves a remainder zero for all numbers.

HCF of 816, 308 is 4 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 816, 308 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 816, 308 is 4.

HCF(816, 308) = 4

HCF of 816, 308 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 816, 308 is 4.

Highest Common Factor of 816,308 using Euclid's algorithm

Highest Common Factor of 816,308 is 4

Step 1: Since 816 > 308, we apply the division lemma to 816 and 308, to get

816 = 308 x 2 + 200

Step 2: Since the reminder 308 ≠ 0, we apply division lemma to 200 and 308, to get

308 = 200 x 1 + 108

Step 3: We consider the new divisor 200 and the new remainder 108, and apply the division lemma to get

200 = 108 x 1 + 92

We consider the new divisor 108 and the new remainder 92,and apply the division lemma to get

108 = 92 x 1 + 16

We consider the new divisor 92 and the new remainder 16,and apply the division lemma to get

92 = 16 x 5 + 12

We consider the new divisor 16 and the new remainder 12,and apply the division lemma to get

16 = 12 x 1 + 4

We consider the new divisor 12 and the new remainder 4,and apply the division lemma to get

12 = 4 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 816 and 308 is 4

Notice that 4 = HCF(12,4) = HCF(16,12) = HCF(92,16) = HCF(108,92) = HCF(200,108) = HCF(308,200) = HCF(816,308) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 816, 308 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 816, 308?

Answer: HCF of 816, 308 is 4 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 816, 308 using Euclid's Algorithm?

Answer: For arbitrary numbers 816, 308 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.