Highest Common Factor of 82, 41, 35, 928 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 82, 41, 35, 928 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 82, 41, 35, 928 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 82, 41, 35, 928 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 82, 41, 35, 928 is 1.

HCF(82, 41, 35, 928) = 1

HCF of 82, 41, 35, 928 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 82, 41, 35, 928 is 1.

Highest Common Factor of 82,41,35,928 using Euclid's algorithm

Highest Common Factor of 82,41,35,928 is 1

Step 1: Since 82 > 41, we apply the division lemma to 82 and 41, to get

82 = 41 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 41, the HCF of 82 and 41 is 41

Notice that 41 = HCF(82,41) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 41 > 35, we apply the division lemma to 41 and 35, to get

41 = 35 x 1 + 6

Step 2: Since the reminder 35 ≠ 0, we apply division lemma to 6 and 35, to get

35 = 6 x 5 + 5

Step 3: We consider the new divisor 6 and the new remainder 5, and apply the division lemma to get

6 = 5 x 1 + 1

We consider the new divisor 5 and the new remainder 1, and apply the division lemma to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 41 and 35 is 1

Notice that 1 = HCF(5,1) = HCF(6,5) = HCF(35,6) = HCF(41,35) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 928 > 1, we apply the division lemma to 928 and 1, to get

928 = 1 x 928 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 928 is 1

Notice that 1 = HCF(928,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 82, 41, 35, 928 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 82, 41, 35, 928?

Answer: HCF of 82, 41, 35, 928 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 82, 41, 35, 928 using Euclid's Algorithm?

Answer: For arbitrary numbers 82, 41, 35, 928 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.