Highest Common Factor of 82, 41, 890, 815 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 82, 41, 890, 815 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 82, 41, 890, 815 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 82, 41, 890, 815 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 82, 41, 890, 815 is 1.

HCF(82, 41, 890, 815) = 1

HCF of 82, 41, 890, 815 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 82, 41, 890, 815 is 1.

Highest Common Factor of 82,41,890,815 using Euclid's algorithm

Highest Common Factor of 82,41,890,815 is 1

Step 1: Since 82 > 41, we apply the division lemma to 82 and 41, to get

82 = 41 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 41, the HCF of 82 and 41 is 41

Notice that 41 = HCF(82,41) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 890 > 41, we apply the division lemma to 890 and 41, to get

890 = 41 x 21 + 29

Step 2: Since the reminder 41 ≠ 0, we apply division lemma to 29 and 41, to get

41 = 29 x 1 + 12

Step 3: We consider the new divisor 29 and the new remainder 12, and apply the division lemma to get

29 = 12 x 2 + 5

We consider the new divisor 12 and the new remainder 5,and apply the division lemma to get

12 = 5 x 2 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 41 and 890 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(12,5) = HCF(29,12) = HCF(41,29) = HCF(890,41) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 815 > 1, we apply the division lemma to 815 and 1, to get

815 = 1 x 815 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 815 is 1

Notice that 1 = HCF(815,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 82, 41, 890, 815 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 82, 41, 890, 815?

Answer: HCF of 82, 41, 890, 815 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 82, 41, 890, 815 using Euclid's Algorithm?

Answer: For arbitrary numbers 82, 41, 890, 815 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.