Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 821, 602, 127 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 821, 602, 127 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 821, 602, 127 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 821, 602, 127 is 1.
HCF(821, 602, 127) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 821, 602, 127 is 1.
Step 1: Since 821 > 602, we apply the division lemma to 821 and 602, to get
821 = 602 x 1 + 219
Step 2: Since the reminder 602 ≠ 0, we apply division lemma to 219 and 602, to get
602 = 219 x 2 + 164
Step 3: We consider the new divisor 219 and the new remainder 164, and apply the division lemma to get
219 = 164 x 1 + 55
We consider the new divisor 164 and the new remainder 55,and apply the division lemma to get
164 = 55 x 2 + 54
We consider the new divisor 55 and the new remainder 54,and apply the division lemma to get
55 = 54 x 1 + 1
We consider the new divisor 54 and the new remainder 1,and apply the division lemma to get
54 = 1 x 54 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 821 and 602 is 1
Notice that 1 = HCF(54,1) = HCF(55,54) = HCF(164,55) = HCF(219,164) = HCF(602,219) = HCF(821,602) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 127 > 1, we apply the division lemma to 127 and 1, to get
127 = 1 x 127 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 127 is 1
Notice that 1 = HCF(127,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 821, 602, 127?
Answer: HCF of 821, 602, 127 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 821, 602, 127 using Euclid's Algorithm?
Answer: For arbitrary numbers 821, 602, 127 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.