Highest Common Factor of 8215, 7898 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 8215, 7898 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 8215, 7898 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 8215, 7898 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 8215, 7898 is 1.

HCF(8215, 7898) = 1

HCF of 8215, 7898 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 8215, 7898 is 1.

Highest Common Factor of 8215,7898 using Euclid's algorithm

Highest Common Factor of 8215,7898 is 1

Step 1: Since 8215 > 7898, we apply the division lemma to 8215 and 7898, to get

8215 = 7898 x 1 + 317

Step 2: Since the reminder 7898 ≠ 0, we apply division lemma to 317 and 7898, to get

7898 = 317 x 24 + 290

Step 3: We consider the new divisor 317 and the new remainder 290, and apply the division lemma to get

317 = 290 x 1 + 27

We consider the new divisor 290 and the new remainder 27,and apply the division lemma to get

290 = 27 x 10 + 20

We consider the new divisor 27 and the new remainder 20,and apply the division lemma to get

27 = 20 x 1 + 7

We consider the new divisor 20 and the new remainder 7,and apply the division lemma to get

20 = 7 x 2 + 6

We consider the new divisor 7 and the new remainder 6,and apply the division lemma to get

7 = 6 x 1 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 8215 and 7898 is 1

Notice that 1 = HCF(6,1) = HCF(7,6) = HCF(20,7) = HCF(27,20) = HCF(290,27) = HCF(317,290) = HCF(7898,317) = HCF(8215,7898) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 8215, 7898 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 8215, 7898?

Answer: HCF of 8215, 7898 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 8215, 7898 using Euclid's Algorithm?

Answer: For arbitrary numbers 8215, 7898 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.