Highest Common Factor of 822, 928, 223, 457 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 822, 928, 223, 457 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 822, 928, 223, 457 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 822, 928, 223, 457 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 822, 928, 223, 457 is 1.

HCF(822, 928, 223, 457) = 1

HCF of 822, 928, 223, 457 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 822, 928, 223, 457 is 1.

Highest Common Factor of 822,928,223,457 using Euclid's algorithm

Highest Common Factor of 822,928,223,457 is 1

Step 1: Since 928 > 822, we apply the division lemma to 928 and 822, to get

928 = 822 x 1 + 106

Step 2: Since the reminder 822 ≠ 0, we apply division lemma to 106 and 822, to get

822 = 106 x 7 + 80

Step 3: We consider the new divisor 106 and the new remainder 80, and apply the division lemma to get

106 = 80 x 1 + 26

We consider the new divisor 80 and the new remainder 26,and apply the division lemma to get

80 = 26 x 3 + 2

We consider the new divisor 26 and the new remainder 2,and apply the division lemma to get

26 = 2 x 13 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 822 and 928 is 2

Notice that 2 = HCF(26,2) = HCF(80,26) = HCF(106,80) = HCF(822,106) = HCF(928,822) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 223 > 2, we apply the division lemma to 223 and 2, to get

223 = 2 x 111 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 223 is 1

Notice that 1 = HCF(2,1) = HCF(223,2) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 457 > 1, we apply the division lemma to 457 and 1, to get

457 = 1 x 457 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 457 is 1

Notice that 1 = HCF(457,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 822, 928, 223, 457 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 822, 928, 223, 457?

Answer: HCF of 822, 928, 223, 457 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 822, 928, 223, 457 using Euclid's Algorithm?

Answer: For arbitrary numbers 822, 928, 223, 457 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.