Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 823, 464, 715 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 823, 464, 715 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 823, 464, 715 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 823, 464, 715 is 1.
HCF(823, 464, 715) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 823, 464, 715 is 1.
Step 1: Since 823 > 464, we apply the division lemma to 823 and 464, to get
823 = 464 x 1 + 359
Step 2: Since the reminder 464 ≠ 0, we apply division lemma to 359 and 464, to get
464 = 359 x 1 + 105
Step 3: We consider the new divisor 359 and the new remainder 105, and apply the division lemma to get
359 = 105 x 3 + 44
We consider the new divisor 105 and the new remainder 44,and apply the division lemma to get
105 = 44 x 2 + 17
We consider the new divisor 44 and the new remainder 17,and apply the division lemma to get
44 = 17 x 2 + 10
We consider the new divisor 17 and the new remainder 10,and apply the division lemma to get
17 = 10 x 1 + 7
We consider the new divisor 10 and the new remainder 7,and apply the division lemma to get
10 = 7 x 1 + 3
We consider the new divisor 7 and the new remainder 3,and apply the division lemma to get
7 = 3 x 2 + 1
We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get
3 = 1 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 823 and 464 is 1
Notice that 1 = HCF(3,1) = HCF(7,3) = HCF(10,7) = HCF(17,10) = HCF(44,17) = HCF(105,44) = HCF(359,105) = HCF(464,359) = HCF(823,464) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 715 > 1, we apply the division lemma to 715 and 1, to get
715 = 1 x 715 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 715 is 1
Notice that 1 = HCF(715,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 823, 464, 715?
Answer: HCF of 823, 464, 715 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 823, 464, 715 using Euclid's Algorithm?
Answer: For arbitrary numbers 823, 464, 715 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.