Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 825, 229, 466, 583 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 825, 229, 466, 583 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 825, 229, 466, 583 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 825, 229, 466, 583 is 1.
HCF(825, 229, 466, 583) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 825, 229, 466, 583 is 1.
Step 1: Since 825 > 229, we apply the division lemma to 825 and 229, to get
825 = 229 x 3 + 138
Step 2: Since the reminder 229 ≠ 0, we apply division lemma to 138 and 229, to get
229 = 138 x 1 + 91
Step 3: We consider the new divisor 138 and the new remainder 91, and apply the division lemma to get
138 = 91 x 1 + 47
We consider the new divisor 91 and the new remainder 47,and apply the division lemma to get
91 = 47 x 1 + 44
We consider the new divisor 47 and the new remainder 44,and apply the division lemma to get
47 = 44 x 1 + 3
We consider the new divisor 44 and the new remainder 3,and apply the division lemma to get
44 = 3 x 14 + 2
We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get
3 = 2 x 1 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 825 and 229 is 1
Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(44,3) = HCF(47,44) = HCF(91,47) = HCF(138,91) = HCF(229,138) = HCF(825,229) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 466 > 1, we apply the division lemma to 466 and 1, to get
466 = 1 x 466 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 466 is 1
Notice that 1 = HCF(466,1) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 583 > 1, we apply the division lemma to 583 and 1, to get
583 = 1 x 583 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 583 is 1
Notice that 1 = HCF(583,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 825, 229, 466, 583?
Answer: HCF of 825, 229, 466, 583 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 825, 229, 466, 583 using Euclid's Algorithm?
Answer: For arbitrary numbers 825, 229, 466, 583 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.