Highest Common Factor of 828, 714, 370 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 828, 714, 370 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 828, 714, 370 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 828, 714, 370 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 828, 714, 370 is 2.

HCF(828, 714, 370) = 2

HCF of 828, 714, 370 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 828, 714, 370 is 2.

Highest Common Factor of 828,714,370 using Euclid's algorithm

Highest Common Factor of 828,714,370 is 2

Step 1: Since 828 > 714, we apply the division lemma to 828 and 714, to get

828 = 714 x 1 + 114

Step 2: Since the reminder 714 ≠ 0, we apply division lemma to 114 and 714, to get

714 = 114 x 6 + 30

Step 3: We consider the new divisor 114 and the new remainder 30, and apply the division lemma to get

114 = 30 x 3 + 24

We consider the new divisor 30 and the new remainder 24,and apply the division lemma to get

30 = 24 x 1 + 6

We consider the new divisor 24 and the new remainder 6,and apply the division lemma to get

24 = 6 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 6, the HCF of 828 and 714 is 6

Notice that 6 = HCF(24,6) = HCF(30,24) = HCF(114,30) = HCF(714,114) = HCF(828,714) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 370 > 6, we apply the division lemma to 370 and 6, to get

370 = 6 x 61 + 4

Step 2: Since the reminder 6 ≠ 0, we apply division lemma to 4 and 6, to get

6 = 4 x 1 + 2

Step 3: We consider the new divisor 4 and the new remainder 2, and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 6 and 370 is 2

Notice that 2 = HCF(4,2) = HCF(6,4) = HCF(370,6) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 828, 714, 370 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 828, 714, 370?

Answer: HCF of 828, 714, 370 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 828, 714, 370 using Euclid's Algorithm?

Answer: For arbitrary numbers 828, 714, 370 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.