Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 828, 939 i.e. 3 the largest integer that leaves a remainder zero for all numbers.
HCF of 828, 939 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 828, 939 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 828, 939 is 3.
HCF(828, 939) = 3
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 828, 939 is 3.
Step 1: Since 939 > 828, we apply the division lemma to 939 and 828, to get
939 = 828 x 1 + 111
Step 2: Since the reminder 828 ≠ 0, we apply division lemma to 111 and 828, to get
828 = 111 x 7 + 51
Step 3: We consider the new divisor 111 and the new remainder 51, and apply the division lemma to get
111 = 51 x 2 + 9
We consider the new divisor 51 and the new remainder 9,and apply the division lemma to get
51 = 9 x 5 + 6
We consider the new divisor 9 and the new remainder 6,and apply the division lemma to get
9 = 6 x 1 + 3
We consider the new divisor 6 and the new remainder 3,and apply the division lemma to get
6 = 3 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 828 and 939 is 3
Notice that 3 = HCF(6,3) = HCF(9,6) = HCF(51,9) = HCF(111,51) = HCF(828,111) = HCF(939,828) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 828, 939?
Answer: HCF of 828, 939 is 3 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 828, 939 using Euclid's Algorithm?
Answer: For arbitrary numbers 828, 939 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.