Highest Common Factor of 831, 917 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 831, 917 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 831, 917 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 831, 917 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 831, 917 is 1.

HCF(831, 917) = 1

HCF of 831, 917 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 831, 917 is 1.

Highest Common Factor of 831,917 using Euclid's algorithm

Highest Common Factor of 831,917 is 1

Step 1: Since 917 > 831, we apply the division lemma to 917 and 831, to get

917 = 831 x 1 + 86

Step 2: Since the reminder 831 ≠ 0, we apply division lemma to 86 and 831, to get

831 = 86 x 9 + 57

Step 3: We consider the new divisor 86 and the new remainder 57, and apply the division lemma to get

86 = 57 x 1 + 29

We consider the new divisor 57 and the new remainder 29,and apply the division lemma to get

57 = 29 x 1 + 28

We consider the new divisor 29 and the new remainder 28,and apply the division lemma to get

29 = 28 x 1 + 1

We consider the new divisor 28 and the new remainder 1,and apply the division lemma to get

28 = 1 x 28 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 831 and 917 is 1

Notice that 1 = HCF(28,1) = HCF(29,28) = HCF(57,29) = HCF(86,57) = HCF(831,86) = HCF(917,831) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 831, 917 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 831, 917?

Answer: HCF of 831, 917 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 831, 917 using Euclid's Algorithm?

Answer: For arbitrary numbers 831, 917 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.