Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 832, 7384 i.e. 104 the largest integer that leaves a remainder zero for all numbers.
HCF of 832, 7384 is 104 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 832, 7384 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 832, 7384 is 104.
HCF(832, 7384) = 104
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 832, 7384 is 104.
Step 1: Since 7384 > 832, we apply the division lemma to 7384 and 832, to get
7384 = 832 x 8 + 728
Step 2: Since the reminder 832 ≠ 0, we apply division lemma to 728 and 832, to get
832 = 728 x 1 + 104
Step 3: We consider the new divisor 728 and the new remainder 104, and apply the division lemma to get
728 = 104 x 7 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 104, the HCF of 832 and 7384 is 104
Notice that 104 = HCF(728,104) = HCF(832,728) = HCF(7384,832) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 832, 7384?
Answer: HCF of 832, 7384 is 104 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 832, 7384 using Euclid's Algorithm?
Answer: For arbitrary numbers 832, 7384 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.