Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 835, 98945 i.e. 5 the largest integer that leaves a remainder zero for all numbers.
HCF of 835, 98945 is 5 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 835, 98945 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 835, 98945 is 5.
HCF(835, 98945) = 5
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 835, 98945 is 5.
Step 1: Since 98945 > 835, we apply the division lemma to 98945 and 835, to get
98945 = 835 x 118 + 415
Step 2: Since the reminder 835 ≠ 0, we apply division lemma to 415 and 835, to get
835 = 415 x 2 + 5
Step 3: We consider the new divisor 415 and the new remainder 5, and apply the division lemma to get
415 = 5 x 83 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 835 and 98945 is 5
Notice that 5 = HCF(415,5) = HCF(835,415) = HCF(98945,835) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 835, 98945?
Answer: HCF of 835, 98945 is 5 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 835, 98945 using Euclid's Algorithm?
Answer: For arbitrary numbers 835, 98945 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.