Highest Common Factor of 837, 9409 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 837, 9409 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 837, 9409 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 837, 9409 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 837, 9409 is 1.

HCF(837, 9409) = 1

HCF of 837, 9409 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 837, 9409 is 1.

Highest Common Factor of 837,9409 using Euclid's algorithm

Highest Common Factor of 837,9409 is 1

Step 1: Since 9409 > 837, we apply the division lemma to 9409 and 837, to get

9409 = 837 x 11 + 202

Step 2: Since the reminder 837 ≠ 0, we apply division lemma to 202 and 837, to get

837 = 202 x 4 + 29

Step 3: We consider the new divisor 202 and the new remainder 29, and apply the division lemma to get

202 = 29 x 6 + 28

We consider the new divisor 29 and the new remainder 28,and apply the division lemma to get

29 = 28 x 1 + 1

We consider the new divisor 28 and the new remainder 1,and apply the division lemma to get

28 = 1 x 28 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 837 and 9409 is 1

Notice that 1 = HCF(28,1) = HCF(29,28) = HCF(202,29) = HCF(837,202) = HCF(9409,837) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 837, 9409 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 837, 9409?

Answer: HCF of 837, 9409 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 837, 9409 using Euclid's Algorithm?

Answer: For arbitrary numbers 837, 9409 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.