Highest Common Factor of 838, 504, 376 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 838, 504, 376 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 838, 504, 376 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 838, 504, 376 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 838, 504, 376 is 2.

HCF(838, 504, 376) = 2

HCF of 838, 504, 376 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 838, 504, 376 is 2.

Highest Common Factor of 838,504,376 using Euclid's algorithm

Highest Common Factor of 838,504,376 is 2

Step 1: Since 838 > 504, we apply the division lemma to 838 and 504, to get

838 = 504 x 1 + 334

Step 2: Since the reminder 504 ≠ 0, we apply division lemma to 334 and 504, to get

504 = 334 x 1 + 170

Step 3: We consider the new divisor 334 and the new remainder 170, and apply the division lemma to get

334 = 170 x 1 + 164

We consider the new divisor 170 and the new remainder 164,and apply the division lemma to get

170 = 164 x 1 + 6

We consider the new divisor 164 and the new remainder 6,and apply the division lemma to get

164 = 6 x 27 + 2

We consider the new divisor 6 and the new remainder 2,and apply the division lemma to get

6 = 2 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 838 and 504 is 2

Notice that 2 = HCF(6,2) = HCF(164,6) = HCF(170,164) = HCF(334,170) = HCF(504,334) = HCF(838,504) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 376 > 2, we apply the division lemma to 376 and 2, to get

376 = 2 x 188 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 376 is 2

Notice that 2 = HCF(376,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 838, 504, 376 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 838, 504, 376?

Answer: HCF of 838, 504, 376 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 838, 504, 376 using Euclid's Algorithm?

Answer: For arbitrary numbers 838, 504, 376 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.