Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 840, 547, 937 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 840, 547, 937 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 840, 547, 937 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 840, 547, 937 is 1.
HCF(840, 547, 937) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 840, 547, 937 is 1.
Step 1: Since 840 > 547, we apply the division lemma to 840 and 547, to get
840 = 547 x 1 + 293
Step 2: Since the reminder 547 ≠ 0, we apply division lemma to 293 and 547, to get
547 = 293 x 1 + 254
Step 3: We consider the new divisor 293 and the new remainder 254, and apply the division lemma to get
293 = 254 x 1 + 39
We consider the new divisor 254 and the new remainder 39,and apply the division lemma to get
254 = 39 x 6 + 20
We consider the new divisor 39 and the new remainder 20,and apply the division lemma to get
39 = 20 x 1 + 19
We consider the new divisor 20 and the new remainder 19,and apply the division lemma to get
20 = 19 x 1 + 1
We consider the new divisor 19 and the new remainder 1,and apply the division lemma to get
19 = 1 x 19 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 840 and 547 is 1
Notice that 1 = HCF(19,1) = HCF(20,19) = HCF(39,20) = HCF(254,39) = HCF(293,254) = HCF(547,293) = HCF(840,547) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 937 > 1, we apply the division lemma to 937 and 1, to get
937 = 1 x 937 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 937 is 1
Notice that 1 = HCF(937,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 840, 547, 937?
Answer: HCF of 840, 547, 937 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 840, 547, 937 using Euclid's Algorithm?
Answer: For arbitrary numbers 840, 547, 937 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.