Highest Common Factor of 8402, 4282 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 8402, 4282 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 8402, 4282 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 8402, 4282 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 8402, 4282 is 2.

HCF(8402, 4282) = 2

HCF of 8402, 4282 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 8402, 4282 is 2.

Highest Common Factor of 8402,4282 using Euclid's algorithm

Highest Common Factor of 8402,4282 is 2

Step 1: Since 8402 > 4282, we apply the division lemma to 8402 and 4282, to get

8402 = 4282 x 1 + 4120

Step 2: Since the reminder 4282 ≠ 0, we apply division lemma to 4120 and 4282, to get

4282 = 4120 x 1 + 162

Step 3: We consider the new divisor 4120 and the new remainder 162, and apply the division lemma to get

4120 = 162 x 25 + 70

We consider the new divisor 162 and the new remainder 70,and apply the division lemma to get

162 = 70 x 2 + 22

We consider the new divisor 70 and the new remainder 22,and apply the division lemma to get

70 = 22 x 3 + 4

We consider the new divisor 22 and the new remainder 4,and apply the division lemma to get

22 = 4 x 5 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 8402 and 4282 is 2

Notice that 2 = HCF(4,2) = HCF(22,4) = HCF(70,22) = HCF(162,70) = HCF(4120,162) = HCF(4282,4120) = HCF(8402,4282) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 8402, 4282 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 8402, 4282?

Answer: HCF of 8402, 4282 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 8402, 4282 using Euclid's Algorithm?

Answer: For arbitrary numbers 8402, 4282 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.