Highest Common Factor of 843, 661, 970 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 843, 661, 970 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 843, 661, 970 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 843, 661, 970 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 843, 661, 970 is 1.

HCF(843, 661, 970) = 1

HCF of 843, 661, 970 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 843, 661, 970 is 1.

Highest Common Factor of 843,661,970 using Euclid's algorithm

Highest Common Factor of 843,661,970 is 1

Step 1: Since 843 > 661, we apply the division lemma to 843 and 661, to get

843 = 661 x 1 + 182

Step 2: Since the reminder 661 ≠ 0, we apply division lemma to 182 and 661, to get

661 = 182 x 3 + 115

Step 3: We consider the new divisor 182 and the new remainder 115, and apply the division lemma to get

182 = 115 x 1 + 67

We consider the new divisor 115 and the new remainder 67,and apply the division lemma to get

115 = 67 x 1 + 48

We consider the new divisor 67 and the new remainder 48,and apply the division lemma to get

67 = 48 x 1 + 19

We consider the new divisor 48 and the new remainder 19,and apply the division lemma to get

48 = 19 x 2 + 10

We consider the new divisor 19 and the new remainder 10,and apply the division lemma to get

19 = 10 x 1 + 9

We consider the new divisor 10 and the new remainder 9,and apply the division lemma to get

10 = 9 x 1 + 1

We consider the new divisor 9 and the new remainder 1,and apply the division lemma to get

9 = 1 x 9 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 843 and 661 is 1

Notice that 1 = HCF(9,1) = HCF(10,9) = HCF(19,10) = HCF(48,19) = HCF(67,48) = HCF(115,67) = HCF(182,115) = HCF(661,182) = HCF(843,661) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 970 > 1, we apply the division lemma to 970 and 1, to get

970 = 1 x 970 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 970 is 1

Notice that 1 = HCF(970,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 843, 661, 970 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 843, 661, 970?

Answer: HCF of 843, 661, 970 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 843, 661, 970 using Euclid's Algorithm?

Answer: For arbitrary numbers 843, 661, 970 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.