Highest Common Factor of 8436, 2039, 86692 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 8436, 2039, 86692 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 8436, 2039, 86692 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 8436, 2039, 86692 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 8436, 2039, 86692 is 1.

HCF(8436, 2039, 86692) = 1

HCF of 8436, 2039, 86692 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 8436, 2039, 86692 is 1.

Highest Common Factor of 8436,2039,86692 using Euclid's algorithm

Highest Common Factor of 8436,2039,86692 is 1

Step 1: Since 8436 > 2039, we apply the division lemma to 8436 and 2039, to get

8436 = 2039 x 4 + 280

Step 2: Since the reminder 2039 ≠ 0, we apply division lemma to 280 and 2039, to get

2039 = 280 x 7 + 79

Step 3: We consider the new divisor 280 and the new remainder 79, and apply the division lemma to get

280 = 79 x 3 + 43

We consider the new divisor 79 and the new remainder 43,and apply the division lemma to get

79 = 43 x 1 + 36

We consider the new divisor 43 and the new remainder 36,and apply the division lemma to get

43 = 36 x 1 + 7

We consider the new divisor 36 and the new remainder 7,and apply the division lemma to get

36 = 7 x 5 + 1

We consider the new divisor 7 and the new remainder 1,and apply the division lemma to get

7 = 1 x 7 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 8436 and 2039 is 1

Notice that 1 = HCF(7,1) = HCF(36,7) = HCF(43,36) = HCF(79,43) = HCF(280,79) = HCF(2039,280) = HCF(8436,2039) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 86692 > 1, we apply the division lemma to 86692 and 1, to get

86692 = 1 x 86692 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 86692 is 1

Notice that 1 = HCF(86692,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 8436, 2039, 86692 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 8436, 2039, 86692?

Answer: HCF of 8436, 2039, 86692 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 8436, 2039, 86692 using Euclid's Algorithm?

Answer: For arbitrary numbers 8436, 2039, 86692 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.