Highest Common Factor of 845, 555, 486 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 845, 555, 486 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 845, 555, 486 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 845, 555, 486 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 845, 555, 486 is 1.

HCF(845, 555, 486) = 1

HCF of 845, 555, 486 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 845, 555, 486 is 1.

Highest Common Factor of 845,555,486 using Euclid's algorithm

Highest Common Factor of 845,555,486 is 1

Step 1: Since 845 > 555, we apply the division lemma to 845 and 555, to get

845 = 555 x 1 + 290

Step 2: Since the reminder 555 ≠ 0, we apply division lemma to 290 and 555, to get

555 = 290 x 1 + 265

Step 3: We consider the new divisor 290 and the new remainder 265, and apply the division lemma to get

290 = 265 x 1 + 25

We consider the new divisor 265 and the new remainder 25,and apply the division lemma to get

265 = 25 x 10 + 15

We consider the new divisor 25 and the new remainder 15,and apply the division lemma to get

25 = 15 x 1 + 10

We consider the new divisor 15 and the new remainder 10,and apply the division lemma to get

15 = 10 x 1 + 5

We consider the new divisor 10 and the new remainder 5,and apply the division lemma to get

10 = 5 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 845 and 555 is 5

Notice that 5 = HCF(10,5) = HCF(15,10) = HCF(25,15) = HCF(265,25) = HCF(290,265) = HCF(555,290) = HCF(845,555) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 486 > 5, we apply the division lemma to 486 and 5, to get

486 = 5 x 97 + 1

Step 2: Since the reminder 5 ≠ 0, we apply division lemma to 1 and 5, to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5 and 486 is 1

Notice that 1 = HCF(5,1) = HCF(486,5) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 845, 555, 486 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 845, 555, 486?

Answer: HCF of 845, 555, 486 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 845, 555, 486 using Euclid's Algorithm?

Answer: For arbitrary numbers 845, 555, 486 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.