Highest Common Factor of 846, 520, 989 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 846, 520, 989 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 846, 520, 989 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 846, 520, 989 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 846, 520, 989 is 1.

HCF(846, 520, 989) = 1

HCF of 846, 520, 989 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 846, 520, 989 is 1.

Highest Common Factor of 846,520,989 using Euclid's algorithm

Highest Common Factor of 846,520,989 is 1

Step 1: Since 846 > 520, we apply the division lemma to 846 and 520, to get

846 = 520 x 1 + 326

Step 2: Since the reminder 520 ≠ 0, we apply division lemma to 326 and 520, to get

520 = 326 x 1 + 194

Step 3: We consider the new divisor 326 and the new remainder 194, and apply the division lemma to get

326 = 194 x 1 + 132

We consider the new divisor 194 and the new remainder 132,and apply the division lemma to get

194 = 132 x 1 + 62

We consider the new divisor 132 and the new remainder 62,and apply the division lemma to get

132 = 62 x 2 + 8

We consider the new divisor 62 and the new remainder 8,and apply the division lemma to get

62 = 8 x 7 + 6

We consider the new divisor 8 and the new remainder 6,and apply the division lemma to get

8 = 6 x 1 + 2

We consider the new divisor 6 and the new remainder 2,and apply the division lemma to get

6 = 2 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 846 and 520 is 2

Notice that 2 = HCF(6,2) = HCF(8,6) = HCF(62,8) = HCF(132,62) = HCF(194,132) = HCF(326,194) = HCF(520,326) = HCF(846,520) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 989 > 2, we apply the division lemma to 989 and 2, to get

989 = 2 x 494 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 989 is 1

Notice that 1 = HCF(2,1) = HCF(989,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 846, 520, 989 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 846, 520, 989?

Answer: HCF of 846, 520, 989 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 846, 520, 989 using Euclid's Algorithm?

Answer: For arbitrary numbers 846, 520, 989 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.