Highest Common Factor of 846, 799, 576 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 846, 799, 576 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 846, 799, 576 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 846, 799, 576 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 846, 799, 576 is 1.

HCF(846, 799, 576) = 1

HCF of 846, 799, 576 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 846, 799, 576 is 1.

Highest Common Factor of 846,799,576 using Euclid's algorithm

Highest Common Factor of 846,799,576 is 1

Step 1: Since 846 > 799, we apply the division lemma to 846 and 799, to get

846 = 799 x 1 + 47

Step 2: Since the reminder 799 ≠ 0, we apply division lemma to 47 and 799, to get

799 = 47 x 17 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 47, the HCF of 846 and 799 is 47

Notice that 47 = HCF(799,47) = HCF(846,799) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 576 > 47, we apply the division lemma to 576 and 47, to get

576 = 47 x 12 + 12

Step 2: Since the reminder 47 ≠ 0, we apply division lemma to 12 and 47, to get

47 = 12 x 3 + 11

Step 3: We consider the new divisor 12 and the new remainder 11, and apply the division lemma to get

12 = 11 x 1 + 1

We consider the new divisor 11 and the new remainder 1, and apply the division lemma to get

11 = 1 x 11 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 47 and 576 is 1

Notice that 1 = HCF(11,1) = HCF(12,11) = HCF(47,12) = HCF(576,47) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 846, 799, 576 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 846, 799, 576?

Answer: HCF of 846, 799, 576 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 846, 799, 576 using Euclid's Algorithm?

Answer: For arbitrary numbers 846, 799, 576 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.