Highest Common Factor of 847, 467, 420, 77 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 847, 467, 420, 77 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 847, 467, 420, 77 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 847, 467, 420, 77 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 847, 467, 420, 77 is 1.

HCF(847, 467, 420, 77) = 1

HCF of 847, 467, 420, 77 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 847, 467, 420, 77 is 1.

Highest Common Factor of 847,467,420,77 using Euclid's algorithm

Highest Common Factor of 847,467,420,77 is 1

Step 1: Since 847 > 467, we apply the division lemma to 847 and 467, to get

847 = 467 x 1 + 380

Step 2: Since the reminder 467 ≠ 0, we apply division lemma to 380 and 467, to get

467 = 380 x 1 + 87

Step 3: We consider the new divisor 380 and the new remainder 87, and apply the division lemma to get

380 = 87 x 4 + 32

We consider the new divisor 87 and the new remainder 32,and apply the division lemma to get

87 = 32 x 2 + 23

We consider the new divisor 32 and the new remainder 23,and apply the division lemma to get

32 = 23 x 1 + 9

We consider the new divisor 23 and the new remainder 9,and apply the division lemma to get

23 = 9 x 2 + 5

We consider the new divisor 9 and the new remainder 5,and apply the division lemma to get

9 = 5 x 1 + 4

We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get

5 = 4 x 1 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 847 and 467 is 1

Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(9,5) = HCF(23,9) = HCF(32,23) = HCF(87,32) = HCF(380,87) = HCF(467,380) = HCF(847,467) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 420 > 1, we apply the division lemma to 420 and 1, to get

420 = 1 x 420 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 420 is 1

Notice that 1 = HCF(420,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 77 > 1, we apply the division lemma to 77 and 1, to get

77 = 1 x 77 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 77 is 1

Notice that 1 = HCF(77,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 847, 467, 420, 77 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 847, 467, 420, 77?

Answer: HCF of 847, 467, 420, 77 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 847, 467, 420, 77 using Euclid's Algorithm?

Answer: For arbitrary numbers 847, 467, 420, 77 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.