Highest Common Factor of 851, 476, 837 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 851, 476, 837 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 851, 476, 837 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 851, 476, 837 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 851, 476, 837 is 1.

HCF(851, 476, 837) = 1

HCF of 851, 476, 837 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 851, 476, 837 is 1.

Highest Common Factor of 851,476,837 using Euclid's algorithm

Highest Common Factor of 851,476,837 is 1

Step 1: Since 851 > 476, we apply the division lemma to 851 and 476, to get

851 = 476 x 1 + 375

Step 2: Since the reminder 476 ≠ 0, we apply division lemma to 375 and 476, to get

476 = 375 x 1 + 101

Step 3: We consider the new divisor 375 and the new remainder 101, and apply the division lemma to get

375 = 101 x 3 + 72

We consider the new divisor 101 and the new remainder 72,and apply the division lemma to get

101 = 72 x 1 + 29

We consider the new divisor 72 and the new remainder 29,and apply the division lemma to get

72 = 29 x 2 + 14

We consider the new divisor 29 and the new remainder 14,and apply the division lemma to get

29 = 14 x 2 + 1

We consider the new divisor 14 and the new remainder 1,and apply the division lemma to get

14 = 1 x 14 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 851 and 476 is 1

Notice that 1 = HCF(14,1) = HCF(29,14) = HCF(72,29) = HCF(101,72) = HCF(375,101) = HCF(476,375) = HCF(851,476) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 837 > 1, we apply the division lemma to 837 and 1, to get

837 = 1 x 837 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 837 is 1

Notice that 1 = HCF(837,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 851, 476, 837 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 851, 476, 837?

Answer: HCF of 851, 476, 837 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 851, 476, 837 using Euclid's Algorithm?

Answer: For arbitrary numbers 851, 476, 837 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.