Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 851, 543 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 851, 543 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 851, 543 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 851, 543 is 1.
HCF(851, 543) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 851, 543 is 1.
Step 1: Since 851 > 543, we apply the division lemma to 851 and 543, to get
851 = 543 x 1 + 308
Step 2: Since the reminder 543 ≠ 0, we apply division lemma to 308 and 543, to get
543 = 308 x 1 + 235
Step 3: We consider the new divisor 308 and the new remainder 235, and apply the division lemma to get
308 = 235 x 1 + 73
We consider the new divisor 235 and the new remainder 73,and apply the division lemma to get
235 = 73 x 3 + 16
We consider the new divisor 73 and the new remainder 16,and apply the division lemma to get
73 = 16 x 4 + 9
We consider the new divisor 16 and the new remainder 9,and apply the division lemma to get
16 = 9 x 1 + 7
We consider the new divisor 9 and the new remainder 7,and apply the division lemma to get
9 = 7 x 1 + 2
We consider the new divisor 7 and the new remainder 2,and apply the division lemma to get
7 = 2 x 3 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 851 and 543 is 1
Notice that 1 = HCF(2,1) = HCF(7,2) = HCF(9,7) = HCF(16,9) = HCF(73,16) = HCF(235,73) = HCF(308,235) = HCF(543,308) = HCF(851,543) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 851, 543?
Answer: HCF of 851, 543 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 851, 543 using Euclid's Algorithm?
Answer: For arbitrary numbers 851, 543 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.