Highest Common Factor of 851, 750, 14, 530 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 851, 750, 14, 530 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 851, 750, 14, 530 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 851, 750, 14, 530 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 851, 750, 14, 530 is 1.

HCF(851, 750, 14, 530) = 1

HCF of 851, 750, 14, 530 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 851, 750, 14, 530 is 1.

Highest Common Factor of 851,750,14,530 using Euclid's algorithm

Highest Common Factor of 851,750,14,530 is 1

Step 1: Since 851 > 750, we apply the division lemma to 851 and 750, to get

851 = 750 x 1 + 101

Step 2: Since the reminder 750 ≠ 0, we apply division lemma to 101 and 750, to get

750 = 101 x 7 + 43

Step 3: We consider the new divisor 101 and the new remainder 43, and apply the division lemma to get

101 = 43 x 2 + 15

We consider the new divisor 43 and the new remainder 15,and apply the division lemma to get

43 = 15 x 2 + 13

We consider the new divisor 15 and the new remainder 13,and apply the division lemma to get

15 = 13 x 1 + 2

We consider the new divisor 13 and the new remainder 2,and apply the division lemma to get

13 = 2 x 6 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 851 and 750 is 1

Notice that 1 = HCF(2,1) = HCF(13,2) = HCF(15,13) = HCF(43,15) = HCF(101,43) = HCF(750,101) = HCF(851,750) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 14 > 1, we apply the division lemma to 14 and 1, to get

14 = 1 x 14 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 14 is 1

Notice that 1 = HCF(14,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 530 > 1, we apply the division lemma to 530 and 1, to get

530 = 1 x 530 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 530 is 1

Notice that 1 = HCF(530,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 851, 750, 14, 530 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 851, 750, 14, 530?

Answer: HCF of 851, 750, 14, 530 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 851, 750, 14, 530 using Euclid's Algorithm?

Answer: For arbitrary numbers 851, 750, 14, 530 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.