Highest Common Factor of 852, 559, 620 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 852, 559, 620 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 852, 559, 620 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 852, 559, 620 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 852, 559, 620 is 1.

HCF(852, 559, 620) = 1

HCF of 852, 559, 620 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 852, 559, 620 is 1.

Highest Common Factor of 852,559,620 using Euclid's algorithm

Highest Common Factor of 852,559,620 is 1

Step 1: Since 852 > 559, we apply the division lemma to 852 and 559, to get

852 = 559 x 1 + 293

Step 2: Since the reminder 559 ≠ 0, we apply division lemma to 293 and 559, to get

559 = 293 x 1 + 266

Step 3: We consider the new divisor 293 and the new remainder 266, and apply the division lemma to get

293 = 266 x 1 + 27

We consider the new divisor 266 and the new remainder 27,and apply the division lemma to get

266 = 27 x 9 + 23

We consider the new divisor 27 and the new remainder 23,and apply the division lemma to get

27 = 23 x 1 + 4

We consider the new divisor 23 and the new remainder 4,and apply the division lemma to get

23 = 4 x 5 + 3

We consider the new divisor 4 and the new remainder 3,and apply the division lemma to get

4 = 3 x 1 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 852 and 559 is 1

Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(23,4) = HCF(27,23) = HCF(266,27) = HCF(293,266) = HCF(559,293) = HCF(852,559) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 620 > 1, we apply the division lemma to 620 and 1, to get

620 = 1 x 620 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 620 is 1

Notice that 1 = HCF(620,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 852, 559, 620 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 852, 559, 620?

Answer: HCF of 852, 559, 620 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 852, 559, 620 using Euclid's Algorithm?

Answer: For arbitrary numbers 852, 559, 620 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.