Highest Common Factor of 853, 453, 567, 232 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 853, 453, 567, 232 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 853, 453, 567, 232 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 853, 453, 567, 232 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 853, 453, 567, 232 is 1.

HCF(853, 453, 567, 232) = 1

HCF of 853, 453, 567, 232 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 853, 453, 567, 232 is 1.

Highest Common Factor of 853,453,567,232 using Euclid's algorithm

Highest Common Factor of 853,453,567,232 is 1

Step 1: Since 853 > 453, we apply the division lemma to 853 and 453, to get

853 = 453 x 1 + 400

Step 2: Since the reminder 453 ≠ 0, we apply division lemma to 400 and 453, to get

453 = 400 x 1 + 53

Step 3: We consider the new divisor 400 and the new remainder 53, and apply the division lemma to get

400 = 53 x 7 + 29

We consider the new divisor 53 and the new remainder 29,and apply the division lemma to get

53 = 29 x 1 + 24

We consider the new divisor 29 and the new remainder 24,and apply the division lemma to get

29 = 24 x 1 + 5

We consider the new divisor 24 and the new remainder 5,and apply the division lemma to get

24 = 5 x 4 + 4

We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get

5 = 4 x 1 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 853 and 453 is 1

Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(24,5) = HCF(29,24) = HCF(53,29) = HCF(400,53) = HCF(453,400) = HCF(853,453) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 567 > 1, we apply the division lemma to 567 and 1, to get

567 = 1 x 567 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 567 is 1

Notice that 1 = HCF(567,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 232 > 1, we apply the division lemma to 232 and 1, to get

232 = 1 x 232 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 232 is 1

Notice that 1 = HCF(232,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 853, 453, 567, 232 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 853, 453, 567, 232?

Answer: HCF of 853, 453, 567, 232 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 853, 453, 567, 232 using Euclid's Algorithm?

Answer: For arbitrary numbers 853, 453, 567, 232 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.