Highest Common Factor of 853, 618, 956 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 853, 618, 956 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 853, 618, 956 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 853, 618, 956 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 853, 618, 956 is 1.

HCF(853, 618, 956) = 1

HCF of 853, 618, 956 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 853, 618, 956 is 1.

Highest Common Factor of 853,618,956 using Euclid's algorithm

Highest Common Factor of 853,618,956 is 1

Step 1: Since 853 > 618, we apply the division lemma to 853 and 618, to get

853 = 618 x 1 + 235

Step 2: Since the reminder 618 ≠ 0, we apply division lemma to 235 and 618, to get

618 = 235 x 2 + 148

Step 3: We consider the new divisor 235 and the new remainder 148, and apply the division lemma to get

235 = 148 x 1 + 87

We consider the new divisor 148 and the new remainder 87,and apply the division lemma to get

148 = 87 x 1 + 61

We consider the new divisor 87 and the new remainder 61,and apply the division lemma to get

87 = 61 x 1 + 26

We consider the new divisor 61 and the new remainder 26,and apply the division lemma to get

61 = 26 x 2 + 9

We consider the new divisor 26 and the new remainder 9,and apply the division lemma to get

26 = 9 x 2 + 8

We consider the new divisor 9 and the new remainder 8,and apply the division lemma to get

9 = 8 x 1 + 1

We consider the new divisor 8 and the new remainder 1,and apply the division lemma to get

8 = 1 x 8 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 853 and 618 is 1

Notice that 1 = HCF(8,1) = HCF(9,8) = HCF(26,9) = HCF(61,26) = HCF(87,61) = HCF(148,87) = HCF(235,148) = HCF(618,235) = HCF(853,618) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 956 > 1, we apply the division lemma to 956 and 1, to get

956 = 1 x 956 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 956 is 1

Notice that 1 = HCF(956,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 853, 618, 956 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 853, 618, 956?

Answer: HCF of 853, 618, 956 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 853, 618, 956 using Euclid's Algorithm?

Answer: For arbitrary numbers 853, 618, 956 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.