Highest Common Factor of 853, 9153 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 853, 9153 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 853, 9153 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 853, 9153 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 853, 9153 is 1.

HCF(853, 9153) = 1

HCF of 853, 9153 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 853, 9153 is 1.

Highest Common Factor of 853,9153 using Euclid's algorithm

Highest Common Factor of 853,9153 is 1

Step 1: Since 9153 > 853, we apply the division lemma to 9153 and 853, to get

9153 = 853 x 10 + 623

Step 2: Since the reminder 853 ≠ 0, we apply division lemma to 623 and 853, to get

853 = 623 x 1 + 230

Step 3: We consider the new divisor 623 and the new remainder 230, and apply the division lemma to get

623 = 230 x 2 + 163

We consider the new divisor 230 and the new remainder 163,and apply the division lemma to get

230 = 163 x 1 + 67

We consider the new divisor 163 and the new remainder 67,and apply the division lemma to get

163 = 67 x 2 + 29

We consider the new divisor 67 and the new remainder 29,and apply the division lemma to get

67 = 29 x 2 + 9

We consider the new divisor 29 and the new remainder 9,and apply the division lemma to get

29 = 9 x 3 + 2

We consider the new divisor 9 and the new remainder 2,and apply the division lemma to get

9 = 2 x 4 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 853 and 9153 is 1

Notice that 1 = HCF(2,1) = HCF(9,2) = HCF(29,9) = HCF(67,29) = HCF(163,67) = HCF(230,163) = HCF(623,230) = HCF(853,623) = HCF(9153,853) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 853, 9153 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 853, 9153?

Answer: HCF of 853, 9153 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 853, 9153 using Euclid's Algorithm?

Answer: For arbitrary numbers 853, 9153 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.