Highest Common Factor of 854, 4596 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 854, 4596 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 854, 4596 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 854, 4596 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 854, 4596 is 2.

HCF(854, 4596) = 2

HCF of 854, 4596 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 854, 4596 is 2.

Highest Common Factor of 854,4596 using Euclid's algorithm

Highest Common Factor of 854,4596 is 2

Step 1: Since 4596 > 854, we apply the division lemma to 4596 and 854, to get

4596 = 854 x 5 + 326

Step 2: Since the reminder 854 ≠ 0, we apply division lemma to 326 and 854, to get

854 = 326 x 2 + 202

Step 3: We consider the new divisor 326 and the new remainder 202, and apply the division lemma to get

326 = 202 x 1 + 124

We consider the new divisor 202 and the new remainder 124,and apply the division lemma to get

202 = 124 x 1 + 78

We consider the new divisor 124 and the new remainder 78,and apply the division lemma to get

124 = 78 x 1 + 46

We consider the new divisor 78 and the new remainder 46,and apply the division lemma to get

78 = 46 x 1 + 32

We consider the new divisor 46 and the new remainder 32,and apply the division lemma to get

46 = 32 x 1 + 14

We consider the new divisor 32 and the new remainder 14,and apply the division lemma to get

32 = 14 x 2 + 4

We consider the new divisor 14 and the new remainder 4,and apply the division lemma to get

14 = 4 x 3 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 854 and 4596 is 2

Notice that 2 = HCF(4,2) = HCF(14,4) = HCF(32,14) = HCF(46,32) = HCF(78,46) = HCF(124,78) = HCF(202,124) = HCF(326,202) = HCF(854,326) = HCF(4596,854) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 854, 4596 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 854, 4596?

Answer: HCF of 854, 4596 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 854, 4596 using Euclid's Algorithm?

Answer: For arbitrary numbers 854, 4596 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.