Highest Common Factor of 856, 718, 303, 137 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 856, 718, 303, 137 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 856, 718, 303, 137 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 856, 718, 303, 137 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 856, 718, 303, 137 is 1.

HCF(856, 718, 303, 137) = 1

HCF of 856, 718, 303, 137 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 856, 718, 303, 137 is 1.

Highest Common Factor of 856,718,303,137 using Euclid's algorithm

Highest Common Factor of 856,718,303,137 is 1

Step 1: Since 856 > 718, we apply the division lemma to 856 and 718, to get

856 = 718 x 1 + 138

Step 2: Since the reminder 718 ≠ 0, we apply division lemma to 138 and 718, to get

718 = 138 x 5 + 28

Step 3: We consider the new divisor 138 and the new remainder 28, and apply the division lemma to get

138 = 28 x 4 + 26

We consider the new divisor 28 and the new remainder 26,and apply the division lemma to get

28 = 26 x 1 + 2

We consider the new divisor 26 and the new remainder 2,and apply the division lemma to get

26 = 2 x 13 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 856 and 718 is 2

Notice that 2 = HCF(26,2) = HCF(28,26) = HCF(138,28) = HCF(718,138) = HCF(856,718) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 303 > 2, we apply the division lemma to 303 and 2, to get

303 = 2 x 151 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 303 is 1

Notice that 1 = HCF(2,1) = HCF(303,2) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 137 > 1, we apply the division lemma to 137 and 1, to get

137 = 1 x 137 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 137 is 1

Notice that 1 = HCF(137,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 856, 718, 303, 137 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 856, 718, 303, 137?

Answer: HCF of 856, 718, 303, 137 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 856, 718, 303, 137 using Euclid's Algorithm?

Answer: For arbitrary numbers 856, 718, 303, 137 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.