Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 857, 8217, 5591 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 857, 8217, 5591 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 857, 8217, 5591 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 857, 8217, 5591 is 1.
HCF(857, 8217, 5591) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 857, 8217, 5591 is 1.
Step 1: Since 8217 > 857, we apply the division lemma to 8217 and 857, to get
8217 = 857 x 9 + 504
Step 2: Since the reminder 857 ≠ 0, we apply division lemma to 504 and 857, to get
857 = 504 x 1 + 353
Step 3: We consider the new divisor 504 and the new remainder 353, and apply the division lemma to get
504 = 353 x 1 + 151
We consider the new divisor 353 and the new remainder 151,and apply the division lemma to get
353 = 151 x 2 + 51
We consider the new divisor 151 and the new remainder 51,and apply the division lemma to get
151 = 51 x 2 + 49
We consider the new divisor 51 and the new remainder 49,and apply the division lemma to get
51 = 49 x 1 + 2
We consider the new divisor 49 and the new remainder 2,and apply the division lemma to get
49 = 2 x 24 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 857 and 8217 is 1
Notice that 1 = HCF(2,1) = HCF(49,2) = HCF(51,49) = HCF(151,51) = HCF(353,151) = HCF(504,353) = HCF(857,504) = HCF(8217,857) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 5591 > 1, we apply the division lemma to 5591 and 1, to get
5591 = 1 x 5591 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 5591 is 1
Notice that 1 = HCF(5591,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 857, 8217, 5591?
Answer: HCF of 857, 8217, 5591 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 857, 8217, 5591 using Euclid's Algorithm?
Answer: For arbitrary numbers 857, 8217, 5591 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.