Highest Common Factor of 858, 297, 700 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 858, 297, 700 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 858, 297, 700 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 858, 297, 700 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 858, 297, 700 is 1.

HCF(858, 297, 700) = 1

HCF of 858, 297, 700 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 858, 297, 700 is 1.

Highest Common Factor of 858,297,700 using Euclid's algorithm

Highest Common Factor of 858,297,700 is 1

Step 1: Since 858 > 297, we apply the division lemma to 858 and 297, to get

858 = 297 x 2 + 264

Step 2: Since the reminder 297 ≠ 0, we apply division lemma to 264 and 297, to get

297 = 264 x 1 + 33

Step 3: We consider the new divisor 264 and the new remainder 33, and apply the division lemma to get

264 = 33 x 8 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 33, the HCF of 858 and 297 is 33

Notice that 33 = HCF(264,33) = HCF(297,264) = HCF(858,297) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 700 > 33, we apply the division lemma to 700 and 33, to get

700 = 33 x 21 + 7

Step 2: Since the reminder 33 ≠ 0, we apply division lemma to 7 and 33, to get

33 = 7 x 4 + 5

Step 3: We consider the new divisor 7 and the new remainder 5, and apply the division lemma to get

7 = 5 x 1 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 33 and 700 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(7,5) = HCF(33,7) = HCF(700,33) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 858, 297, 700 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 858, 297, 700?

Answer: HCF of 858, 297, 700 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 858, 297, 700 using Euclid's Algorithm?

Answer: For arbitrary numbers 858, 297, 700 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.