Highest Common Factor of 861, 244, 232, 990 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 861, 244, 232, 990 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 861, 244, 232, 990 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 861, 244, 232, 990 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 861, 244, 232, 990 is 1.

HCF(861, 244, 232, 990) = 1

HCF of 861, 244, 232, 990 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 861, 244, 232, 990 is 1.

Highest Common Factor of 861,244,232,990 using Euclid's algorithm

Highest Common Factor of 861,244,232,990 is 1

Step 1: Since 861 > 244, we apply the division lemma to 861 and 244, to get

861 = 244 x 3 + 129

Step 2: Since the reminder 244 ≠ 0, we apply division lemma to 129 and 244, to get

244 = 129 x 1 + 115

Step 3: We consider the new divisor 129 and the new remainder 115, and apply the division lemma to get

129 = 115 x 1 + 14

We consider the new divisor 115 and the new remainder 14,and apply the division lemma to get

115 = 14 x 8 + 3

We consider the new divisor 14 and the new remainder 3,and apply the division lemma to get

14 = 3 x 4 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 861 and 244 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(14,3) = HCF(115,14) = HCF(129,115) = HCF(244,129) = HCF(861,244) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 232 > 1, we apply the division lemma to 232 and 1, to get

232 = 1 x 232 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 232 is 1

Notice that 1 = HCF(232,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 990 > 1, we apply the division lemma to 990 and 1, to get

990 = 1 x 990 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 990 is 1

Notice that 1 = HCF(990,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 861, 244, 232, 990 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 861, 244, 232, 990?

Answer: HCF of 861, 244, 232, 990 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 861, 244, 232, 990 using Euclid's Algorithm?

Answer: For arbitrary numbers 861, 244, 232, 990 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.