Highest Common Factor of 861, 50495 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 861, 50495 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 861, 50495 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 861, 50495 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 861, 50495 is 1.

HCF(861, 50495) = 1

HCF of 861, 50495 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 861, 50495 is 1.

Highest Common Factor of 861,50495 using Euclid's algorithm

Highest Common Factor of 861,50495 is 1

Step 1: Since 50495 > 861, we apply the division lemma to 50495 and 861, to get

50495 = 861 x 58 + 557

Step 2: Since the reminder 861 ≠ 0, we apply division lemma to 557 and 861, to get

861 = 557 x 1 + 304

Step 3: We consider the new divisor 557 and the new remainder 304, and apply the division lemma to get

557 = 304 x 1 + 253

We consider the new divisor 304 and the new remainder 253,and apply the division lemma to get

304 = 253 x 1 + 51

We consider the new divisor 253 and the new remainder 51,and apply the division lemma to get

253 = 51 x 4 + 49

We consider the new divisor 51 and the new remainder 49,and apply the division lemma to get

51 = 49 x 1 + 2

We consider the new divisor 49 and the new remainder 2,and apply the division lemma to get

49 = 2 x 24 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 861 and 50495 is 1

Notice that 1 = HCF(2,1) = HCF(49,2) = HCF(51,49) = HCF(253,51) = HCF(304,253) = HCF(557,304) = HCF(861,557) = HCF(50495,861) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 861, 50495 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 861, 50495?

Answer: HCF of 861, 50495 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 861, 50495 using Euclid's Algorithm?

Answer: For arbitrary numbers 861, 50495 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.