Highest Common Factor of 866, 338, 351 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 866, 338, 351 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 866, 338, 351 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 866, 338, 351 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 866, 338, 351 is 1.

HCF(866, 338, 351) = 1

HCF of 866, 338, 351 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 866, 338, 351 is 1.

Highest Common Factor of 866,338,351 using Euclid's algorithm

Highest Common Factor of 866,338,351 is 1

Step 1: Since 866 > 338, we apply the division lemma to 866 and 338, to get

866 = 338 x 2 + 190

Step 2: Since the reminder 338 ≠ 0, we apply division lemma to 190 and 338, to get

338 = 190 x 1 + 148

Step 3: We consider the new divisor 190 and the new remainder 148, and apply the division lemma to get

190 = 148 x 1 + 42

We consider the new divisor 148 and the new remainder 42,and apply the division lemma to get

148 = 42 x 3 + 22

We consider the new divisor 42 and the new remainder 22,and apply the division lemma to get

42 = 22 x 1 + 20

We consider the new divisor 22 and the new remainder 20,and apply the division lemma to get

22 = 20 x 1 + 2

We consider the new divisor 20 and the new remainder 2,and apply the division lemma to get

20 = 2 x 10 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 866 and 338 is 2

Notice that 2 = HCF(20,2) = HCF(22,20) = HCF(42,22) = HCF(148,42) = HCF(190,148) = HCF(338,190) = HCF(866,338) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 351 > 2, we apply the division lemma to 351 and 2, to get

351 = 2 x 175 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 351 is 1

Notice that 1 = HCF(2,1) = HCF(351,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 866, 338, 351 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 866, 338, 351?

Answer: HCF of 866, 338, 351 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 866, 338, 351 using Euclid's Algorithm?

Answer: For arbitrary numbers 866, 338, 351 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.