Highest Common Factor of 8671, 3514 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 8671, 3514 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 8671, 3514 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 8671, 3514 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 8671, 3514 is 1.

HCF(8671, 3514) = 1

HCF of 8671, 3514 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 8671, 3514 is 1.

Highest Common Factor of 8671,3514 using Euclid's algorithm

Highest Common Factor of 8671,3514 is 1

Step 1: Since 8671 > 3514, we apply the division lemma to 8671 and 3514, to get

8671 = 3514 x 2 + 1643

Step 2: Since the reminder 3514 ≠ 0, we apply division lemma to 1643 and 3514, to get

3514 = 1643 x 2 + 228

Step 3: We consider the new divisor 1643 and the new remainder 228, and apply the division lemma to get

1643 = 228 x 7 + 47

We consider the new divisor 228 and the new remainder 47,and apply the division lemma to get

228 = 47 x 4 + 40

We consider the new divisor 47 and the new remainder 40,and apply the division lemma to get

47 = 40 x 1 + 7

We consider the new divisor 40 and the new remainder 7,and apply the division lemma to get

40 = 7 x 5 + 5

We consider the new divisor 7 and the new remainder 5,and apply the division lemma to get

7 = 5 x 1 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 8671 and 3514 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(7,5) = HCF(40,7) = HCF(47,40) = HCF(228,47) = HCF(1643,228) = HCF(3514,1643) = HCF(8671,3514) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 8671, 3514 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 8671, 3514?

Answer: HCF of 8671, 3514 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 8671, 3514 using Euclid's Algorithm?

Answer: For arbitrary numbers 8671, 3514 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.