Highest Common Factor of 8677, 9083 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 8677, 9083 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 8677, 9083 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 8677, 9083 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 8677, 9083 is 1.

HCF(8677, 9083) = 1

HCF of 8677, 9083 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 8677, 9083 is 1.

Highest Common Factor of 8677,9083 using Euclid's algorithm

Highest Common Factor of 8677,9083 is 1

Step 1: Since 9083 > 8677, we apply the division lemma to 9083 and 8677, to get

9083 = 8677 x 1 + 406

Step 2: Since the reminder 8677 ≠ 0, we apply division lemma to 406 and 8677, to get

8677 = 406 x 21 + 151

Step 3: We consider the new divisor 406 and the new remainder 151, and apply the division lemma to get

406 = 151 x 2 + 104

We consider the new divisor 151 and the new remainder 104,and apply the division lemma to get

151 = 104 x 1 + 47

We consider the new divisor 104 and the new remainder 47,and apply the division lemma to get

104 = 47 x 2 + 10

We consider the new divisor 47 and the new remainder 10,and apply the division lemma to get

47 = 10 x 4 + 7

We consider the new divisor 10 and the new remainder 7,and apply the division lemma to get

10 = 7 x 1 + 3

We consider the new divisor 7 and the new remainder 3,and apply the division lemma to get

7 = 3 x 2 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 8677 and 9083 is 1

Notice that 1 = HCF(3,1) = HCF(7,3) = HCF(10,7) = HCF(47,10) = HCF(104,47) = HCF(151,104) = HCF(406,151) = HCF(8677,406) = HCF(9083,8677) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 8677, 9083 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 8677, 9083?

Answer: HCF of 8677, 9083 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 8677, 9083 using Euclid's Algorithm?

Answer: For arbitrary numbers 8677, 9083 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.