Highest Common Factor of 868, 280, 619, 487 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 868, 280, 619, 487 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 868, 280, 619, 487 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 868, 280, 619, 487 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 868, 280, 619, 487 is 1.

HCF(868, 280, 619, 487) = 1

HCF of 868, 280, 619, 487 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 868, 280, 619, 487 is 1.

Highest Common Factor of 868,280,619,487 using Euclid's algorithm

Highest Common Factor of 868,280,619,487 is 1

Step 1: Since 868 > 280, we apply the division lemma to 868 and 280, to get

868 = 280 x 3 + 28

Step 2: Since the reminder 280 ≠ 0, we apply division lemma to 28 and 280, to get

280 = 28 x 10 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 28, the HCF of 868 and 280 is 28

Notice that 28 = HCF(280,28) = HCF(868,280) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 619 > 28, we apply the division lemma to 619 and 28, to get

619 = 28 x 22 + 3

Step 2: Since the reminder 28 ≠ 0, we apply division lemma to 3 and 28, to get

28 = 3 x 9 + 1

Step 3: We consider the new divisor 3 and the new remainder 1, and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 28 and 619 is 1

Notice that 1 = HCF(3,1) = HCF(28,3) = HCF(619,28) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 487 > 1, we apply the division lemma to 487 and 1, to get

487 = 1 x 487 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 487 is 1

Notice that 1 = HCF(487,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 868, 280, 619, 487 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 868, 280, 619, 487?

Answer: HCF of 868, 280, 619, 487 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 868, 280, 619, 487 using Euclid's Algorithm?

Answer: For arbitrary numbers 868, 280, 619, 487 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.