Highest Common Factor of 870, 469 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 870, 469 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 870, 469 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 870, 469 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 870, 469 is 1.

HCF(870, 469) = 1

HCF of 870, 469 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 870, 469 is 1.

Highest Common Factor of 870,469 using Euclid's algorithm

Highest Common Factor of 870,469 is 1

Step 1: Since 870 > 469, we apply the division lemma to 870 and 469, to get

870 = 469 x 1 + 401

Step 2: Since the reminder 469 ≠ 0, we apply division lemma to 401 and 469, to get

469 = 401 x 1 + 68

Step 3: We consider the new divisor 401 and the new remainder 68, and apply the division lemma to get

401 = 68 x 5 + 61

We consider the new divisor 68 and the new remainder 61,and apply the division lemma to get

68 = 61 x 1 + 7

We consider the new divisor 61 and the new remainder 7,and apply the division lemma to get

61 = 7 x 8 + 5

We consider the new divisor 7 and the new remainder 5,and apply the division lemma to get

7 = 5 x 1 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 870 and 469 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(7,5) = HCF(61,7) = HCF(68,61) = HCF(401,68) = HCF(469,401) = HCF(870,469) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 870, 469 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 870, 469?

Answer: HCF of 870, 469 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 870, 469 using Euclid's Algorithm?

Answer: For arbitrary numbers 870, 469 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.