Highest Common Factor of 870, 681, 366 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 870, 681, 366 i.e. 3 the largest integer that leaves a remainder zero for all numbers.

HCF of 870, 681, 366 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 870, 681, 366 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 870, 681, 366 is 3.

HCF(870, 681, 366) = 3

HCF of 870, 681, 366 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 870, 681, 366 is 3.

Highest Common Factor of 870,681,366 using Euclid's algorithm

Highest Common Factor of 870,681,366 is 3

Step 1: Since 870 > 681, we apply the division lemma to 870 and 681, to get

870 = 681 x 1 + 189

Step 2: Since the reminder 681 ≠ 0, we apply division lemma to 189 and 681, to get

681 = 189 x 3 + 114

Step 3: We consider the new divisor 189 and the new remainder 114, and apply the division lemma to get

189 = 114 x 1 + 75

We consider the new divisor 114 and the new remainder 75,and apply the division lemma to get

114 = 75 x 1 + 39

We consider the new divisor 75 and the new remainder 39,and apply the division lemma to get

75 = 39 x 1 + 36

We consider the new divisor 39 and the new remainder 36,and apply the division lemma to get

39 = 36 x 1 + 3

We consider the new divisor 36 and the new remainder 3,and apply the division lemma to get

36 = 3 x 12 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 870 and 681 is 3

Notice that 3 = HCF(36,3) = HCF(39,36) = HCF(75,39) = HCF(114,75) = HCF(189,114) = HCF(681,189) = HCF(870,681) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 366 > 3, we apply the division lemma to 366 and 3, to get

366 = 3 x 122 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 3 and 366 is 3

Notice that 3 = HCF(366,3) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 870, 681, 366 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 870, 681, 366?

Answer: HCF of 870, 681, 366 is 3 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 870, 681, 366 using Euclid's Algorithm?

Answer: For arbitrary numbers 870, 681, 366 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.