Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 870, 712, 710 i.e. 2 the largest integer that leaves a remainder zero for all numbers.
HCF of 870, 712, 710 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 870, 712, 710 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 870, 712, 710 is 2.
HCF(870, 712, 710) = 2
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 870, 712, 710 is 2.
Step 1: Since 870 > 712, we apply the division lemma to 870 and 712, to get
870 = 712 x 1 + 158
Step 2: Since the reminder 712 ≠ 0, we apply division lemma to 158 and 712, to get
712 = 158 x 4 + 80
Step 3: We consider the new divisor 158 and the new remainder 80, and apply the division lemma to get
158 = 80 x 1 + 78
We consider the new divisor 80 and the new remainder 78,and apply the division lemma to get
80 = 78 x 1 + 2
We consider the new divisor 78 and the new remainder 2,and apply the division lemma to get
78 = 2 x 39 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 870 and 712 is 2
Notice that 2 = HCF(78,2) = HCF(80,78) = HCF(158,80) = HCF(712,158) = HCF(870,712) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 710 > 2, we apply the division lemma to 710 and 2, to get
710 = 2 x 355 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 710 is 2
Notice that 2 = HCF(710,2) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 870, 712, 710?
Answer: HCF of 870, 712, 710 is 2 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 870, 712, 710 using Euclid's Algorithm?
Answer: For arbitrary numbers 870, 712, 710 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.