Highest Common Factor of 870, 9143 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 870, 9143 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 870, 9143 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 870, 9143 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 870, 9143 is 1.

HCF(870, 9143) = 1

HCF of 870, 9143 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 870, 9143 is 1.

Highest Common Factor of 870,9143 using Euclid's algorithm

Highest Common Factor of 870,9143 is 1

Step 1: Since 9143 > 870, we apply the division lemma to 9143 and 870, to get

9143 = 870 x 10 + 443

Step 2: Since the reminder 870 ≠ 0, we apply division lemma to 443 and 870, to get

870 = 443 x 1 + 427

Step 3: We consider the new divisor 443 and the new remainder 427, and apply the division lemma to get

443 = 427 x 1 + 16

We consider the new divisor 427 and the new remainder 16,and apply the division lemma to get

427 = 16 x 26 + 11

We consider the new divisor 16 and the new remainder 11,and apply the division lemma to get

16 = 11 x 1 + 5

We consider the new divisor 11 and the new remainder 5,and apply the division lemma to get

11 = 5 x 2 + 1

We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 870 and 9143 is 1

Notice that 1 = HCF(5,1) = HCF(11,5) = HCF(16,11) = HCF(427,16) = HCF(443,427) = HCF(870,443) = HCF(9143,870) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 870, 9143 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 870, 9143?

Answer: HCF of 870, 9143 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 870, 9143 using Euclid's Algorithm?

Answer: For arbitrary numbers 870, 9143 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.